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Fault Detection of the Cylindrical Plunge Grinding Process by
Using the Parameters of AE Signals

Jae-Seob Kwak*, Ji-Bok Song
School of Mechanical Engineering, Pusan National University

The focus of this study is the development of a credible fault detection system of the
cylindrical plunge grinding process. The acoustic emission (AE) signals generated during
machining were analyzed to determine the relationship between grinding-related faults and
characteristics of changes in signals. Furthermore, a neural network, which has excellent ability
in pattern classification, was applied to the diagnosis system. The neural network was optimized
with a momentum coefficient, a learning rate, and a structure of the hidden layer in the iterative
learning process. The success rates of fault detection were verified.
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1. Introduction

In recent years, the grinding operation has been
used in precision machining when surface rough
ness and/or geometric tolerances cannot be met
by traditional cutting operations. With the neces
sity of near net-shape technology for precision
components, the demand for the improvement of
grinding performance will increase. However,
there are unique characteristics in the grinding
process. For example, as opposed to a turning
tool, grinding wheels contain many grains that
are randomly spaced and occupied within the
periphery of the wheel. For this reason, a mathe
matical approach to studying the grinding process
includes many functional parameters that cannot
certify to their quantitative relations (Lindsay
and Hahn, 1971; Kim et al., 1994).

A grinding burn, which is one of the faults
occur to a ground surface, is related to the thick
ness of the oxide layer, which in turn is affected
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by the maximum temperature at the cutting zone
(Kawamura and Mitsuhasi, 1981). The generated
burn deteriorates the surface performance of a
product. Another fault is chatter vibration, which
is a relative motion between the grinding wheel
and the workpiece. As the result of this motion,
the ground surface includes undesired integrity
and, in some cases, damage. In addition, the
increased grinding force associated with chatter
vibration leads to accelerated wheel wear (Liao
and Shiang, 1991). Workpiece burn during the
grinding process is essentially a kind of an ir
reversible change in the microstructure of a sur
face layer. The burn occurs when workpiece is
exposed to continuous high temperature at the
grinding zone. A visual observation of a grinding
burn is due to temper colors from very thin oxide
layers on the workpiece surface. This layer of
ferrous material is composed of Fez0 3, Fe304, and
FeO membranes from the free surface. At the
onset of a grinding burn, the grinding force and
the rate of wheel wear increase sharply, and the
surface roughness deteriorates. S. Malkin (1989)
proposed a critical limit for grinding burn with
respect to various items in surface grinding.
According to his research, grinding burn appears
easily on the surface of a workpiece when smaller
abrasives, higher grades of grinding wheels and
more hardened materials are used.



774 Jae-Seob Kwak and Ji-Bok Song

(4)

(5)

Chatter vibration is a dynamic instability that
occurs in most machining processes, including
grinding, and is considered to be the most serious
cause of deterioration of surface quality. In gen
eral, such vibration limits the productivity of
machining operations and causes the deteriora
tion of the integrity of workpiece surfaces. More
over, during the grinding process, the growth of a
wavy surface on the grinding wheel, a growth
induced by chatter vibration, results in the need
for the interruption of the grinding process to
dress the wheel.

In this study, the neural network has been
applied to grinding diagnosis system. The param
eters of acoustic emission (AE) signals have been
used as the inputs of the neural network.

2. AE Signal and Neural Network

2.1 Fault Phenomena and AE Signal
Grinding is often done in the final finishing of

a component because of its ability to satisfy strict
requirements of surface roughness. However,
when a grinding fault generates, the allowable
range of surface roughness cannot be maintained.
Grinding burns often occur in workpieces, espe
cially with -adhesive materials. Metals adhering
between voids within the grinding wheel constrict
the action of machining. Therefore, the grinding
operation becomes an abnormal state and the
grinding temperature rapidly rises to about 1,
OOO°C. Due to the effects of the increased tempera
ture, the surface of the workpiece is burnt. Chatter
marks, which are normal to grinding direction,
can appear on the ground surface. As the grinding
burn or the chatter vibration occurs, the deteriora
tion of the surface becomes evident.

In order to produce a product that solves
grinding faults such as burn and chatter vibration,
they must be monitored by credible methods.

The AE generated during a grinding process
has been proven to contain information strongly
related to the condition changes in the grinding
zone (Konig et al., 1995; Wakuda et al., 1993;
Dornfeld and Cai, 1984; Emel and Asibu, 1998).
The investigation described in this paper uses AE
signals to detect chatter vibration and grinding

burn. The parameters for monitoring potential
problems are the peak of RMS (Root Mean
Square), the peak of FFT (Fast Fourier Trans
form), the count out of the threshold, and the
standard deviation of acquired AE signals.

2.2 Back-propagation Algorithm
In the hope of achieving human-like perfor

mance, artificial neural networks have been stud
ied for many years in the field of speech, image
recognition and pattern classification (Bruck and
Goodman, 1988; Widrow et al., 1975; White,
1989). Such neural networks are composed of
many non-linear computational elements operat
ing in parallel fashion. Neural networks, because
of their massive nature, can perform computations
at a higher rate. Because of their adaptive nature
in using the learning process, neural networks can
adapt to changes in the data and learn the charac
teristics of input signals. Learning in a neural
network means finding an appropriate set of
weights that are connection strengths from the
elements of one layer to the elements of the next
layer. In this study, the back propagation algor
ithm of neural networks, which is one of the
learning modes, is used. The squared error (Ep )

for the output layer and the weight-change equa
tion are given by the following equations (Free
man and Skapura, 1991).

Ep=+~(Tpk-OPk)2 (I)

aEp _ 1 "" a ('T' 0) 2
aWii -27; all~ii .1 Pk - Pk

= - ~ (Tp h - OPk) I' k (netPk ) Wkj
k

<I', (netpj) XPi (2)

Wkj(t+ 1) = Wkj(t) +a oPkipi

+mL1Wkj(t-l) (3)

where u:-Ji is the weight on the connection from
the ith input element to jth element of another
layer, a is called the learning-rate parameter,
and iPi and OPk are presented as follows:

. a L
ZPi= (--~WkjXpj + Ok)

aWkji=l

OPk= Tpk - OPk

m is the momentum coefficient, which increases
in the speed of convergence for learning the
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neural networks. X Pi is an input pattern, and t'
( ) indicates a derivative of sigmoid transfer

function for each layer. Tpk is the teaching data,

and OPk is the output data of the neural networks.

3. Experiment and Results

3.1 Experimental Methods
Figure 1 shows a scheme of the experimental

setup. A series of grinding tests were conducted

on a cylindrical grinder with a 228 mm diameter,

WA60LmV wheel, which is commonly used in

workshops. An AE sensor with a frequency

response of wide bands (100-800 kHz) was used

to measure the signals generated during the grind

ing operation. The sensor was attached to the

center of a grinding machine. To avoid signal

attenuation during the transportation from the

Stepping Motor

Table 1 Conditions for obtaining AE signals

Items Conditions

Grinding Type: WA60LmV
Wheel Size: ¢228 X 24 mm

Wheel
Vs=27.1 m/s(1800 RPM)

Speed

Material: STD II
Workpiece

Hardness: HRC 45

Workpiece
Vw=0.15-0.30 m/s

Speed

Infeed
0.5 mm/rnin (75 pieces)

Rate
1.0 rum/min (75 pieces)
2.0 rum/min (75 pieces)

Cutting
Dry Cut

Fluid

Single Pointed Diamond Dresser
Dressing Depth of Cut: 0.0125 mm

Lead: 0.015 rum/rev

Grinding Motor (AC)

Grinding Machine

Computer I
• PulseControl
• Infeed Control
• Spark-Out

Computer 2

• SaveData(Raw Signal)
• DataProcessing

• RMSPeak
• Count Outof Threshold
• Standard Deviation
• FFrPeak

Fig. 1 Experimental setup for fault detection
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3.2 Experimental Results and Discussions
Figure 2(a) shows typical AE signals obtained

sis. Stored signals were analyzed through data
processing. Grinding conditions used in monitor
ing the AE signals are listed in Table 1.
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sensor to a computer, a pre-amplifier was con
nected to the cable of signal flow and its auxiliary
function was to filter the noise that disturbs the
AE signals. The raw AE signals were digitized
using an AID converter Model peL-818 and
stored using a personal computer for later analy-
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Fig. 2 Obtained AE signals and signal processing forms



Fault Detection of the Cylindrical Plunge Grinding Process by-: 777

from the grinding operation. As in other metal
cutting processes, the raw signals are continuous
types and sharply fluctuate with grinding time.
The amplitudes of raw signals increase according
to the number of ground workpieces, but because
of the similitude in signals grinding states are not
always distinguished either stable or unstable.
Therefore, other analytic parameters are needed
to identify the grinding state. Figure 2 (b) pres
ents the signal to process the RMS with the raw
signal shown in Fig. 2 (a). The changes in AE
signals are easily verified by an AE RMS level
and a distinctive type. The results of the frequency
analysis with the raw signals are drawn in Fig. 2
(c). The FFT amplitude is evident, especially
when the frequency ranges reach about 1.8 kHz
and 15 kHz. Because the wheel rotational fre
quency is approximately 30 Hz, it can be seen that
a fault frequency is an integer multiple of the
wheel rotational frequency. When the sampled
values have a sufficiently strong central tendency,
then a standard deviation of the sampled values
may be useful for characterizing the set. The
standard deviation is the positive square root of
the variance that reveals the degree of distribution

for the sampled data. Figure 2 (d) presents the
distribution of AE signals, and it shows that the
stronger central tendency is in a stable grinding
state. Based on the above results, the parameters
of the AE signals for monitoring faults have been
selected, measured, and are shown in Figs. 3-6.

In Fig. 3, the peak values of RMS increase
gradually according to the number of grinding
pieces. It was found that the more the in-feed
rates are applied, the higher the level of the RMS
peak became. Figure 4 presents the peak values of
FFT. The FFT's level maintains to a particular
piece, as an example, the 25th piece with 2.0 mm/
min in-feed rate, and after the 25th piece, the
peak level increases suddenly. The boundary
point of the change in peak values often implies
the fault generated. In this case, chatter marks
generated on the workpiece are experimently
observed.

Figure 5 shows the count outs of the threshold
over the 20 mV level of the acquired raw signal
that was enumerated with a computer program.
The threshold level is determined by a prelimi
nary experiment. The increased count outs of the
threshold may be considered as a sign of a fault.
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Fig. 3 RMS peak versus number of pieces
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Fig. 5 Standard deviation versus number of pieces

Fig. 4 FFT peak versus number of pieces
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Figure 6 presents the standard deviation of the
raw AE signals according to the number of grind
ing pieces. It can be seen that the value of the
standard deviation increases when the number of
ground pieces increases. By varying the parame
ters, a more effective diagnosis system for grind
ing fault can be established.

4. Fault Detection System

Depending on the selection of the above param
eters, especially the learning-rate and the momen
tum coefficient, the performance of neural net
works can vary widely. Therefore, it is necessary
to optimize the neural networks with optimal
parameters.

From the results shown in Fig. 7, which was
obtained through a preliminary study, the value
of the learning-rate and the momentum coeffi
cient were found to be 0.6 and 0.8, respectively.

Also, it was decided that the number of hidden
layers would be two.

Simulations for implementing the system for
diagnosing grinding faults were conducted on a
personal computer. Figure 8 shows the architec
ture of the neural network used. The input units
were the peak of the RMS, the peak of the FFT,
the count out of the threshold, and the standard
deviation of AE signals. Normal, burning, and
chatter vibration states were used as the output
parameters, which had the interval values from 0
to I. In comparison with these values of output
parameters, most major value of the parameters
indicates the state of the grinding operation.

Table 2 presents the values of input parameters
and the desired output based on the AE experi
mental results. At the desired output, each pattern
has the value of unity (only one parameter) or
zero. For example, the neural network has
learned that the grinding pattern of AE-5 is
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Fig. 7 Relationship between learning parameters and squared error

InputLayer First HiddenLayer Second Hidden Layer OutputLayer

I Normal I
I Burning I

Fig. 8 Architecture of the neural network used in this study
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Table 2 AE supervised data for the learning of neural network

779

Input Parameters
Desired Output

Pattern RMS Standard FFT Threshold
Peak Deviation Peak Count

Normal Burning Chatter

AE-05 0.021 0.096 0.0200 0 I 0 0

AE-06 0.018 0.087 0.0081 0 I 0 0

AE-07 0.021 0.109 0.0138 0 I 0 0

AE-08 0.024 0.091 0.0093 0 I 0 0

AE-09 0.019 0.078 0.0069 0 I 0 0

AE-43 0.034 0.155 0.0245 10 0 I 0

AE-45 0.037 0.139 0.0409 23 0 1 0

AE-46 0.032 0.140 0.0223 9 0 1 0

AE-70 0.033 0.283 0.0490 48 0 0 1

AE-71 0.048 0.322 0.1130 626 0 0 1

AE-72 0.042 0.342 0.0664 931 0 0 I

AE-73 0.039 0.305 0.0569 607 0 0 1

AE-74 0.033 0.256 0.0382 68 0 0 1

Table 3 Recalled results of the AE data in neural network

Input Parameters
Outputs of Neural Network

Pattern RMS Standard FFT Results
Count Normal Burning Chatter

Peak Deviation Peak

AE-05 0.021 0.096 0.0200 0 0.987990 0.010019 0.010521 Normal

AE-06 O.oJ8 0.087 0.0081 0 0.987986 0.010020 0.010523 Normal

AE-07 0.021 0.109 0.0138 0 0.987993 0.010019 0.010518 Normal

AE-08 0.024 0.091 0.0093 0 0.987988 0.010020 0.010522 Normal

AE-09 0.019 0.078 0.0069 0 0.987984 0.010020 0.010525 Normal

AE-43 0.034 0.155 0.0245 10 0.010223 0.813255 0.185224 Burning

AE-45 0.037 0.139 0.0409 23 0.010218 0.813217 0.185274 Burning

AE-46 0.032 0.140 0.0223 9 0.010221 0.813247 0.185241 Burning

AE-70 0.033 0.283 0.0490 48 0.010217 0.013143 0.985249 Chatter

AE-71 0.048 0.322 0.1130 626 0.010216 0.013142 0.985247 Chatter

AE-72 0.042 0.342 0.0664 931 0.010216 0.013141 0.985251 Chatter

AE-73 0.039 0.305 0.0569 607 0.010217 0.013242 0.985250 Chatter

AE-74 0.033 0.256 0.0382 68 0.010224 0.014132 0.985243 Chatter

normal, AE-43 indicates burning, and AE-70

indicates chatter vibration.

The recalled results that were obtained through

the iterative learning of the established neural

network are listed in Table 3. The outputs of the

neural network coincide with the desired outputs

shown in Table 2. This indicates that learning by

the neural network has been successful and that

this system for diagnosing grinding faults is able

to recognize the various grinding states.
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Table 4 Implementation results for new AE data

Input Parameters
Outputs of Neural Network

Pattern ResultsRMS Standard FFT
Peak Deviation

Count Normal Burning Chatter
Peak

AE-IO 0.014 0.075 0.0078 0 0.967983 0.010020 0.010525 Normal 0
AE-ll 0.023 0.116 0.0165 0 0.957995 0.010018 0.010517 Normal 0
AE-12 0.023 0.111 0.0116 0 0.957993 0.010019 0.010518 Normal 0
AE-13 0.019 0.097 0.0144 0 0.967990 0.010019 0.010521 Normal 0
AE-14 0.019 0.105 0.0084 0 0.967992 0.010019 0.010519 Normal 0
AE-15 0.017 0.089 Om08 0 0.947987 0.010020 0.010522 Normal 0
AE-44 0.034 0.194 0.0409 11 0.010223 0.613252 0.386741 Burning 0
AE-47 0.034 0.155 0.0372 13 0.010219 0.613252 0.386741 Burning 0
AE-48 0.033 0.158 0.0403 16 0.010217 0.613253 0.386746 Burning 0
AE-57 0.035 0.191 0.0314 20 0.010132 0.484631 0.542173 Chatter X

AE-58 0.038 0.194 0.0410 24 0.010212 0.044217 0.563142 Chatter X

AE-66 0.040 0.234 0.0450 156 0.010219 0.413252 0.586742 Chatter 0
AE-67 0.046 0.239 0.0493 258 0.010221 0.42355 0.606744 Chatter 0
AE-68 0.037 0.266 0.0451 114 0.010221 0.373253 0.616745 Chatter 0
AE-69 0.037 0.279 0.0387 94 0.010217 0.313255 0.676741 Chatter 0

.00r-----;::::===~---J

Normal I!unllDa Cholter

0riDdina: Slob:

Fig. 9 Performance of the established fault diagno
sis system

Table 4 lists the implementation results for new

AE data, which were not learned in the previous

step. In this case, the output values of the neural

network have a few changes compared with the

outputs listed in Tables 2 and 3. The normal

parameters shown in Table 4 have a higher con

centration of unity values when the normal state

of the grinding operation is maintained. However,

burning and chatter vibration parameters have a

lower concentration of unity when burning or

chatter vibration state is generated. Some errone

ous recognition was made in the boundary points

between burning and chatter vibration states.

Although lower concentration of unity and

erroneous results occurred, the recognizable per

formance of the diagnosis system was very good.

Figure 9 shows the respective percentages of the

success rates according to the various layer struc

tures in the diagnosis system. From Fig. 9, it is

evident that the maximum performance becomes

about 90% when the layer structure of the neural

network is composed of 4-5-5-3 units.

5. Conclusion

A method using the AE signals has been devel

oped for recognizing chatter vibration and grind

ing burn in the cylindrical plunge grinding proc

ess. The following conclusions can be drawn from

the results of this study:

(1) When grinding faults such as chatter vibra

tion and grinding burn occur, the values of the

AE parameters for the peak of the RMS, the peak
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of the FFT, the standard deviation, and the count
out of the threshold all increase non-linearly. The
more the in-feed rates are applied, the higher the
levels of AE parameters become.

(2) The FFT amplitude is especially evident
when the frequency ranges reach about 1.8 kHz
and 15 kHz. Because the wheel rotational fre
quency is approximately 30 Hz, it is seen that a
fault frequency is an integer that is a multiple of
the wheel rotational frequency.

(3) Depending on the selection of parameters,
especially the learning-rate and the momentum
coefficient, the performance of neural networks
can vary widely. To optimize a neural network
for fault diagnosis, the value of the learning-rate
and the momentum coefficient were respectively
determined to be 0.6 and 0.8. Also, the number of
hidden layers was determined to be two.

(4) Based on the implementation results of the
computer simulation for new AE data that were
not learned, it was found that the output values of
normal parameters have a higher concentration of
unity values when the normal state of the grinding
operation is maintained. On the other hand,
burning or chatter vibration parameters have
lower concentrations of unity values when the
burning or the chatter vibration occurs. Some
erroneous recognition was made in the boundary
point between burning and chatter vibration. The
maximum performance became about 90% when
the layer structure of the neural network is optim
ized.
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